KMA315 Analysis 3A: Problems 1

The problems should be submitted by 4:00pm on Friday the $11^{\text {th }}$ of March.

1. Find the infimum (greatest lower bound) and supremum (least upper bound) of the following subsets of \mathbb{R} (justify your claims):
(i) $\left\{\frac{2}{n+1}: n \in \mathbb{N}\right\} ;$ (4 marks)
(ii) $\left\{\frac{(-1)^{n}}{n^{3}}: n \in \mathbb{Z}_{+}\right\}$; (4 marks)
(iii) $\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}$. (4 marks)
2. Let A be a subset of real numbers such that A contains only a finite number of elements. Is it possible for the greatest lower bound of A to not be an element of A ? Justify your claim. (2 marks)
3. Determine and explain whether the following sequences are - (a) bounded above/below, (b) monotone increasing/decreasing, (c) convergent and (d) if they converge then also what their limit is:
(i) $\left((-1)^{n}\right)_{n=0}^{\infty}$; (5 marks)
(ii) $\left(\frac{2}{n+1}\right)_{n=0}^{\infty}$. $(5$ marks)
4. Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ be sequences of real numbers. Prove that:
(i) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ are bounded above then $\left(a_{n} b_{n}\right)_{n=0}^{\infty}$ is also bounded above; (3 marks)
(ii) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ are monotone decreasing then $\left(a_{n}+b_{n}\right)_{n=0}^{\infty}$ is also monotone decreasing; (3 marks)
(iii) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ converge then $\left(a_{n}+b_{n}\right)_{n=0}^{\infty}$ also converges [also prove that in such a case we have $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)+\left(\lim _{n \rightarrow \infty} b_{n}\right)$]. (3 marks)
5. Prove that if a sequence of real numbers is monotone decreasing and bounded below then it converges to its infimum (aka greatest lower bound). (4 marks)
